The Flagship of the Australian Fleet, H.M.A.S. MELBOURNE

Including Programme of Open Days at

H.M.A.S. "WATSON"
5th OCTOBER, 1964
H.M.A. NAVAL ESTABLISHMENTS, GARDEN ISLAND
10th OCTOBER, 1964

2/-
From

'ENGLISH ELECTRIC'

the largest powerhouse ever fitted to an Australian-built ship

With its full load of vehicles and passengers, the 'Empress of Australia' is a city in miniature...a city that needs a constant and completely reliable source of power.

'English Electric' supplied it...more than enough power for a city of 10,000 people. These four giant 'statically excited' 'English Electric' diesel alternator units with a combined output of 2.4 megawatts generate power for all needs except propulsion. All switchgear, too, was supplied by 'English Electric'.

At sea and on land, 'English Electric' is helping to power Australia's progress.

Power for a nation's future

THE ENGLISH ELECTRIC COMPANY OF AUSTRALIA PTY. LTD.
Sydney & Newcastle • Brisbane • Melbourne
Hobart • Adelaide • Perth

THE NAVY TODAY

THIS IS the first occasion on which I have had the pleasure of writing an introductory message to the "Navy Week" edition of "The Navy".

My association with the Navy began at a sad and difficult time for the R.A.N. But I have had the great advantage of observing the R.A.N. from the inside, and of studying events in perspective.

As the Prime Minister stated in Parliament:— "The loss of VOYAGER and the report made upon that loss may have induced some to reach sweeping adverse conclusions about our Navy. This would in our opinion be grossly unjust and unwarranted, since . . . unhappily accidents occur in all navies and should not be hastily used as a reason for attacking our Navy as a whole. . . . We do think that justice requires that I should set out certain facts which show that whatever improvements may, on examination, be found desirable in the overall organisation of the Navy and its officers, we have every right to be proud of the Navy for the way in which it has handled the problems which have come to it in recent years."

In talking of perspective, it is worth considering some of the Navy's recent and future developments, and the operational commitments undertaken by the R.A.N.

This year has seen the commissioning of two fine new ships—one a missile-equipped warship and the other a hydrographic vessel of world class. The warship, H.M.A.S. DERWENT, is the R.A.N.'s first ship with the "Seacat" sea-to-air guided missile system. The survey ship, H.M.A.S. MORESBY, is the Navy's first ship designed specifically for hydrographic research.

Work has started in Australia on a new escort maintenance ship which will provide repair facilities in operational areas and make an important contribution to the mobility of the Australian Fleet. Next year, construction of two new anti-submarine frigates will begin in Australian shipyards.

In Britain, work has begun on the first of four OBERON Class submarines, while in the United States the first two of three versatile CHARLES F. ADAMS Class guided missile destroyers will commission next year.

R.A.N. ships steamed over half a million miles during the past year, and the Navy is now contributing to the security of Malaysia in addition to its continuous contribution to the British Commonwealth Strategic Reserve. Four R.A.N. minesweepers are being maintained on patrol duties off the coast of the Borneo states of Malaysia.

During "Navy Week", I hope that some of you will take advantage of the opportunity to see something of the R.A.N. for yourselves. I am sure you will be proud of what you see, and will be impressed by the calibre of the officers and men who are devoting their careers to the security of the nation.

SEPTEMBER-OCTOBER, 1964
life at sea

is a good life, better than ever before, and in the Merchant Navy, more modern ships are appearing on the Australian Register each year.

In addition to operating its own fleet of cargo vessels, the B.H.P. Co. Ltd. has Australia's largest shipbuilding yard at Whyalla, thereby providing employment for a wide variety of trades and professions...producing the steel, building the ships, then sailing them, surely a widespread and vital national project.
BOYS! This is your chance to take part in Australia’s Naval programme and learn an interesting and useful trade.

NAVAL DOCKYARD APPRENTICES

PARENTS Here is an opportunity for your son to be apprenticed and receive training in all branches of Naval Repair and Refitting work in the largest and best-equipped Naval Yard and Dry Dock in the Southern Hemisphere.

APPRENTICESHIP is available at Garden Island Dockyard, Sydney, controlled by the Commonwealth Government, under conditions which will enable you not only to become an efficient tradesman, but give you the opportunity of qualifying as a Draughtsman in Mechanical or Electrical Engineering, or Ship Construction. The period of apprenticeship is for 5 years, and subject to satisfactory progress, Technical College fees will be paid by the Commonwealth Government.

RATES OF PAY are in accordance with the Arbitration Court Award made between the Department and the Trade Unions. On completion of the first year, an additional weekly payment is made, subject to satisfactory progress. Three weeks’ annual leave and liberal sick leave are granted, and an allowance is payable to apprentices who are obliged to live away from home owing to distance.

ELIGIBILITY Age limit is 15 years and under 17 years at date of taking up appointment. A satisfactory pass at the Intermediate Certificate examination is desirable, but not essential.

VACANCIES exist for the following trade apprenticeships: Fitter and Turner, Electrical Fitter and Mechanic, Radio Tradesmen, Boilermaker and Welder, Shipwright and Boatbuilder, Ship’s Plumber, Painter and Moulder, Copper-smith, Engineersmith, Motor Mechanic, Sailmaker, Sheetmetal Workers.

APPLICATION must be made on the form prescribed. For application form and copy of conditions of entry, apply to your District Employment Office, or the General Manager, Garden Island Dockyard, Sydney, by letter, or telephone FL 0444, Extension 325 (Mr. Kimber). Closing date is 16th November, 1964.

Message from Rear Admiral A. W. R. McNicoll

FLAG OFFICER IN CHARGE, EAST AUSTRALIA AREA

Open days at H.M.A.S. WATSON and at H.M.A. Naval Establishments at Garden Island and in H.M.A. ships, give you, the taxpayer, the opportunity to see some of the ways in which your money is being applied to the defence of Australia.

The Navy is proud of its ships and installations and I have pleasure in welcoming you and hope that you, too, will be impressed by the ships, equipment and men that you will see.

H.M.A.S. WATSON is the establishment where officers and men are trained in Anti-Submarine and Radar techniques. You will see some of the complex equipment used in that training, which duplicates so far as possible the equipment which the Navy uses in its seagoing ships.

At Garden Island you will see the facilities used in refitting the Fleet and several displays and demonstrations will also be given.

Because of the Navy’s commitments there will only be a few H.M.A. ships in the dockyard. Two Daring class destroyers, H.M.A.S. VAMPIRE and H.M.A.S. VENDETTA are on active service with the Commonwealth Strategic Reserve in Malaysia and four minesweepers are also on active service in Malaysian waters. In addition, ships of the R.A.N. are busy engaged in oceanographic and survey work in Australian and New Guinea waters and other ships are working up and exercising off the coast.

However, this year at the invitation of Rear Admiral Becher, you are invited to inspect the flagship of the fleet—H.M.A.S. MELBOURNE—and H.M.A.S. DERWENT and H.M.A.S. ANZAC.

H.M.A.S. DERWENT is the newest ship in the Fleet. She is an Anti-Submarine frigate with the latest variable depth sonar and with an improved anti-aircraft capability provided by the Seacat short range sea to air guided missiles.

I hope you will also meet the men of the Navy and take the opportunity to talk to them. You will find they are young Australians of the highest calibre, well worthy of your support, and men deserving of being capable of carrying on the independent tradition of Australian naval courage and efficiency laid down by the first H.M.A.S. SYDNEY when she sank the EMDEN fifty years ago on 9th November, 1914...

WELCOME
BATTLE OF THE NILE

Masters Medal

The medal reproduced here by courtesy of Mr. Kenneth C. Bruff, Macdonnell, of Sydney, grandson of Mr. Bruff, Master of one of Nelson's ships, "Orion", at the Battle of the Nile, has come down to Mr. Macdonnell as a family legacy.

"Orion" carried 74 guns with a complement of 500 men and was commanded by Captain Sir James Saumarez, of Norman descent but born in the Island of Guernsey. A distinguished naval officer, he was a member of Nelson's Band of Brothers.

A commemorative victory medal in gold to Admirals and Captains engaged in naval actions was not exceptional, but the gift after the Battle of the Nile of gold medals to Admirals and Captains, silver to Lieutenants and Officers ranking with them, copper-gilt to inferior officers and copper-bronse to the men by a private individual. Mr. Alexander Davison, an intimate friend of Nelson's, was responsible for the sale of the prizes. The device is remarkable in another way; the engraver is said to have made the mistake, on the reverse side, of showing the French Fleet at anchor with the British Fleet advancing to the attack and the sun setting in the East. The figure supporting Nelson's profile on the face of the medal is that of Hope.

During her visit to Canberra late in September, Her Royal Highness Princess Marina, Duchess of Kent, will see at first hand the contribution which Wrens make to the operation of the Navy's main shore radio station, H.M.A.S. HARMAN.

The Minister for the Navy, Mr. Chaney, said recently that Princess Marina would spend 45 minutes at H.M.A.S. HARMAN on Tuesday the 30th September. The Princess, Honorary Commandant of the Women's Royal Australian Naval Service, would be making her first visit to an Australian Naval establishment.

More than 100 Wrens are serving at H.M.A.S. HARMAN, making it the biggest W.R.A.N.S. establishment outside of the training school at H.M.A.S. CERBERUS in Victoria. Most of the Wrens at HARMAN are involved in the work of the Naval radio station.

On her visit to H.M.A.S. HARMAN, Princess Marina will watch Wrens radio operators handling messages linking ships and Naval headquarters around the world. She will see meals being prepared by Wrens cooks, and will inspect the Wrens' living accommodation. The living quarters, Alexandra House, were opened by her daughter, Princess Alexandra, in 1959.

The Princess will be welcomed at HARMAN by the Minister for the Navy, and will also meet the Captain, Commander C. J. Streeter, and the Director of the W.R.A.N.S., Chief Officer J. Streeter. The Senior Wrens Officer at HARMAN, First Officer E. M. McNamara, will accompany the Princess on her tour of inspection.

H.M.A.S. HARMAN, which is a major centre in Naval communications network, was the first Naval establishment to employ Wrens in the Second World War.

Princess Marina, who is Honorary Commandant of the W.R.N.S. in Britain, accepted a similar appointment in the W.R.A.N.S. soon after the Australian Service was re-established as a peace-time unit in 1951. Wrens serve at Naval establishments throughout Australia as stewards, sick berth attendants, cooks, radio communication operators, radar plotters, writers, stores assistants and motor transport drivers.

This page is sponsored, in support of the Navy League of Australia, by

COUPLAND & WADDELL PTY. LTD.
ELECTRICAL & MECHANICAL ENGINEERS
15-23 DAY STREET, SYDNEY

SEPTEMBER-OCTOBER, 1964
THE UNITED SHIP SERVICES PTY. LTD.
GEELONG MELBOURNE PORTLAND
VICTORIA AUSTRALIA

88-102 NORMANBY RD., SOUTH MELBOURNE

Telephone: 69-5231

Petrol and diesel engines purr like kittens
... LOSE FAR LESS POWER!

There's a difference about Elastomuffle Silencers. They're made of durable Neoprene with a patented cone expansion baffle to make them quieter, more efficient, almost everlasting ... and cheaper! Elastomuffle is by far Australia's most popular silencer. Fit one to YOUR craft, and enjoy the difference. Halvorsens have a complete range for all types of wet exhaust Diesels up to 275 h.p. and petrol engines up to 400.

Prices from £8'16'0 incl. clips, incl. tax.

SYDNEY-EMDEN ACTION

Fifty years ago Australia won her first naval victory. This is the story of the action that ensued between the SYDNEY and the EMDEN as told in the official dispatch of Captain Glossop, dated from Colombo on November 15, 1914.

I have the honour to report that whilst on escort duty with the convoy under the charge of Captain Silver, H.M.A.S. MELBOURNE, at 6.30 a.m. on Monday, November 9, a wireless message from Cocos was heard reporting that a foreign warship was off the entrance. I was ordered to raise steam for full speed at 7.00 a.m. and proceeded thither. I worked up to 20 knots, and at 9.15 a.m. sighted land ahead and almost immediately the smoke of a ship, which proved to be H.I.G.M.S. EMDEN, coming out towards me at a great rate. At 9.40 a.m. fire was opened, she firing the first shot. I kept my distance as much as possible to obtain the advantage of my guns. Her fire was very accurate and rapid to begin with, but seemed to slacken very quickly, all casualties occurring in this ship almost immediately. First the foremost funnel of her went, secondly the foremost, and she was badly on fire aft, then

The mast of H.M.A.S. SYDNEY being taken from Bradley's Head to Cockatoo Dock for repairs. It will be replaced for the 50th Anniversary of the action.

SEPTEMBER-OCTOBER, 1964
the second funnel went, and lastly the third funnel, and I saw she was making for the beach on North Keeling Island, where she grounded at 11.20 a.m. I gave her two more broadsides and left her to pursue a merchant ship which had come up during the action.

Although I had guns on this merchant ship at odd times during the action I had not fired, and as she was making off fast, I pursued and overtook her at 12.10, firing a gun across her bows, and hoisting International Code Signal to stop, which she did. I sent an armed boat, and found her to be the S.S. BURESK, a captured British collier, with 18 Chinese crew, 1 English steward, 1 Norwegian cook, and a German prize crew of 3 officers, 1 warrant officer and 12 men. The ship unfortunately was sinking, the Kingston knocked out and damaged to prevent repairing, so I took all on board, fired four shots into her, and returned to EMDEN, passing men swimming in the water, for whom I left two boats I was towing from BURESK.

On arriving again off Emden, she still had her colours up at mainmast head. I inquired by signal. International Code, "Will you surrender?" and received a reply in Morse, "What signal? No signal books." I then made, in Morse, "Do you surrender?" and subsequently, "Have you received my signal?" to neither of which did I get an answer. The German officers on board gave me to understand that the Captain would never surrender, and therefore, though very reluctantly, I again fired at her at 4.30 p.m., ceasing at 4.35, as she showed white flags and hauled down her ensign by sending a man aloft.

I then left EMDEN and returned and picked up the BURESK's two boats, rescuing two sailors (5.00 p.m.), who had been in the water all day. I returned and sent in one boat to EMDEN, manned by her own officers, and one from BURESK and one officer, and stating I would return to their assistance next morning.

I lay on and off all night, and communicated with Direction Island at 8.00 a.m., November 10, to find that the EMDEN's party, consisting of three officers and 40 men, one launch and eight boats, had seized and provisioned a 70-ton schooner (the AYE-SHA), having four Maxim guns with two belts to each. They left the previous night at six o'clock. The wireless station was entirely destroyed, one cable cut, one damaged and one intact. I borrowed a doctor and two assistants, and proceeded as fast as possible to EMDEN's assistance.

I sent an officer on board to see the captain, and in view of the large number of officers and men and wounded and lack of accommodation, etc., in this ship, and the absolute impossibility of leaving them where they were, he agreed that if I received his officers and men and all wounded, "then as for such time as they remained in SYDNEY they would cause no interference with ship or fittings, and would be amenable to the ship's discipline." I therefore set to work at once to tranship them—a most difficult operation, the ship being manned by her own prize crew alongside very heavy. The conditions in the EMDEN were indescribable. I received the last from her at 5.00 p.m., then had to go round to the Ice side to pick up 20 more men who had been managed to get ashore from the ship.

Darkness came on before this could be accomplished, and the ship again stood off and on all night, resuming operations at 5.00 a.m. on November 11, a cutter's crew having to land with stretchers to bring wounded round to embarking point. A German officer, a doctor, died ashore the previous day. The ship in the meantime ran over to Direction Island to return their doctor and assistants, send cables, and was back again at 10.00 a.m., embarked the remainder of wounded, and proceeded for Colombo by 10.35 a.m. Wednesday, November 11.

Total casualties in SYDNEY: Killed, 3; severely wounded (since dead), 1; severely wounded, 4; wounded, 2; slightly wounded, 4. In the EMDEN I can only approximately state the killed at 7 officers and 108 men from Captain's statement. I had on board 11 officers, 9 warrant officers and 191 men, of whom 3 officers and 53 men were wounded, and of this number 1 officer and 3 men have since died of wounds.

The damage to SYDNEY's hull and fittings was surprisingly small; in all about 10 hits seem to have been made. The engine and boiler rooms and funnels escaped entirely.

I have great pleasure in stating that the behaviour of the ship's company was excellent in every way, and with such a large proportion of young hands and people under training it is all the more gratifying.
JUNIOR RECRUITS TRAINING SCHEME

Rear Admiral V. A. T. Smith, 2nd Naval Member, inspects the drum and bugle band at the Junior Recruits Training Establishment H.M.A.S. LEEBURG, designed to train 15½-16½ year old youths for eventual selection and technical training for the Seaman, Communications, Engineering, Electrical and other general branches of the R.A.N.

APPRENTICES AT H.M.A.S. NIRIMBA

Apprentices under instruction on various types of lathes.

The Navy Needs

GOOD MEN — WELL TRAINED

In this missile age, much publicity is given to the advances made in the design of weapons and equipment, but less public attention is given to the men who will maintain and control them.

In the Navy, each new item of equipment is more advanced than its predecessor, and requires a higher degree of skill and knowledge to work it. The searchlight, for example, which was maintained by a man with only a rudimentary knowledge of electricity has been superseded by radar, which requires for its maintenance, a detailed knowledge of electronics.

This trend has affected the Navy in two ways—firstly educational and aptitude standards for entry have been raised and secondly the training of the modern sailor is lengthy and thorough.

It has been said in the past that the greatest single factor in war has been “the man” and in the future this will be more than ever true.

MIDSHIPMEN GRADUATE

Nine N.S.W. Midshipmen talk with the Captain of the R.A.N. College before their graduation in July.

SEPTEMBER-OCTOBER, 1964
T. J. PREST & SONS PTY. LTD.

SHIPPING CONTRACTORS

- BULK GRAIN FITTINGS
- REPAIRS TO INSULATION AND CARGO FITTINGS
- FITTING OUT FOR GENERAL AND REFRIGERATED
- CARGOES, DUNNAGE, TIMBERS AND BURLAP

64 EVANS STREET, PORT MELBOURNE 64-1494 — 64-2184
also at: Portland, Victoria Portland 740

DIESEL AND STEAM TUG OWNERS

(Distinguishing Marks: GREEN Hulls, BLACK Funnels) CONTRACTORS TO THE ADMIRALTY

DIESEL TUGS
Sydney Cove
Farm Cove
Manly Cove
Sirius Cove

STEAM TUGS
Heros
Heroic
Heroine
Himma

PHONES:
82-0178
82-0179

CABLES:
“FENWICK”

J. FENWICK & CO. PTY. LIMITED
FENWICK HOUSE, 2 WESTON STREET, BALMAIN EAST
And at 11 Watt Street, Newcastle, and c/o Adelaide S.S. Co. Ltd., Port Kembla, N.S.W.

FIRST VICTIM

The crew of H.M.A.S. DERWENT’s Sea Cat examines the propeller of the target aircraft which they shot down after only a few attempts.

H.M.A.S. DERWENT, the latest Frigate to join the Royal Australian Navy. Two sister ships are to be built to replace H.M.A.S. Voyager. They will be built at Cockatoo Dock and Williamstown Naval Dockyard.

SEPTEMBER-OCTOBER, 1964
NAMES SELECTED FOR AUSTRALIAN SUBMARINES

The names selected for the Royal Australian Navy's four new submarines. They provide a link with history and with Australian geographical features.

The Minister for the Navy, Mr. Chaney, announced recently that the Administrator, on behalf of Her Majesty the Queen, had approved the names OXLEY, OTWAY, OVENS and ONSLOW for the submarines. The four submarines would be named in that order when they were delivered between 1966-1968.

Mr. Chaney said the R.A.N. names, while being distinctly Australian, would also provide continuity in the "O" Class identification adopted by the Royal Navy in giving all its OBERONS names beginning with "O".

The first of the submarines for the new Australian Submarine Squadron, H.M.A.S. OXLEY, is due to be ready in Britain in December, 1966. OVENS and the second submarine, OTWAY, will perpetuate the names of two Australian submarines associated with the early history of the R.A.N. Submarines with these names served in Australia between 1927 and 1931, and were the submarines owned by the R.A.N. H.M.A.S. OXLEY was derived from the name of a former Surveyor-General of New South Wales, John Oxley (1781-1828).

OTWAY is named after Cape Otway in Victoria, OVENS after the Victorian River, and ONSLOW after the town in Western Australia.

A contract for a total of £16 million has been awarded to a Scottish shipbuilding company, Scotts of Greenock, for the construction of the four Australian OBERONS.

The OBERON is one of the most advanced conventional submarines in the world, combining high speed with great underwater endurance.

R.A.N. volunteers are already training in Britain ready for Australia's new Submarine Service.

ANNUAL GENERAL MEETING OF NEW SOUTH WALES DIVISION NAVY LEAGUE OF AUSTRALIA

At the Annual Meeting of the Navy League of Australia (N.S.W. Division) held in Sydney on August 31, discussion took place on the Royal Commissioner's Report into the loss of H.M.A.S. Voyager. A motion expressing every confidence in the high command and all Officers and men of the Royal Australian Navy was carried (the motion was moved by Rear Admiral H. J. Buchanan, C.B.E., D.S.O. (Rtd.) and seconded by Captain R. B. Stannard, V.C., D.S.O., R.N.R.).

The meeting also noted the tribute paid by the Royal Commissioner to acts of "outstanding leadership, bravery and self-sacrifice on the part of individuals and his comment on the expedition and efficient manner in which the rescue and subsequent search operations were conducted.

Rear Admiral H. A. Showers was re-elected President of the N.S.W. Division.

Sea Cadets: The present number of Sea Cadets on Strength in N.S.W. is as follows:—

<table>
<thead>
<tr>
<th>Ship</th>
<th>Officers</th>
<th>Sea Cadets</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Albatross"</td>
<td>2</td>
<td>61</td>
</tr>
<tr>
<td>"Condumine"</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>"Sydney"</td>
<td>4</td>
<td>46</td>
</tr>
<tr>
<td>"Shroppshire"</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>"Sirius"</td>
<td>3</td>
<td>88</td>
</tr>
<tr>
<td>"Tobruk"</td>
<td>3</td>
<td>73</td>
</tr>
<tr>
<td>"Warrego"</td>
<td>2</td>
<td>46</td>
</tr>
</tbody>
</table>

This shows an increase in total strength of 7, despite the paying-off of Australia. As anticipated last year, good progress has been made in the formation of a Unit at Parramatta; the Unit presently is based on the Macquarie High School and although the initial response to calls for Youths to join was somewhat disappointing, it is hoped that with the early acquisition of some land and the erection of Headquarters Buildings the numbers will rapidly reach the required minimum establishment to become eligible for recognition by the Naval Board.

A lease for a further block of land for T.S. ALBATROSS has been successfully negotiated.

The Efficiency award for 1964 has yet to be notified official announcement, but we are very proud to announce that not only was T.S. WARREGO awarded the title of most efficient Unit in N.S.W.—but are also assessed as the most efficient Unit in Australia. This is a very great honour and we extend our heartiest congratulations to the Commanding Officer, S.C. Lt. Wheeler, his Officers, Instructors and the Sea Cadets themselves.

Parades, by Units at various local functions, as well as the more and better known occasions, i.e., Trafalgar Day, Annual Dinner, Christmas Seamen's Day, as well as the more obvious, i.e., the visit of the Duke of Edinburgh, all received the required response.

The Efficiency award for 1965 will be announced at the Annual Ball of the Royal Australian Navy League of Australia (N.S.W. Division). The Unit presently is based on the Macquarie High School and although the initial response to calls for Youths to join was somewhat disappointing, it is hoped that with the early acquisition of some land and the erection of Headquarters Buildings the numbers will rapidly reach the required minimum establishment to become eligible for recognition by the Naval Board.

A lease for a further block of land for T.S. ALBATROSS has been successfully negotiated.

The Efficiency award for 1964 has yet to be notified official announcement, but we are very proud to announce that not only was T.S. WARREGO awarded the title of most efficient Unit in N.S.W.—but are also assessed as the most efficient Unit in Australia. This is a very great honour and we extend our heartiest congratulations to the Commanding Officer, S.C. Lt. Wheeler, his Officers, Instructors and the Sea Cadets themselves.

Parades, by Units at various local functions, as well as the more and better known occasions, i.e., Trafalgar Day, Annual Dinner, Christmas Seamen's Day, as well as the more obvious, i.e., the visit of the Duke of Edinburgh, all received the required response.

The Efficiency award for 1965 will be announced at the Annual Ball of the Royal Australian Navy League of Australia (N.S.W. Division). The Unit presently is based on the Macquarie High School and although the initial response to calls for Youths to join was somewhat disappointing, it is hoped that with the early acquisition of some land and the erection of Headquarters Buildings the numbers will rapidly reach the required minimum establishment to become eligible for recognition by the Naval Board.

A lease for a further block of land for T.S. ALBATROSS has been successfully negotiated.

The Efficiency award for 1964 has yet to be notified official announcement, but we are very proud to announce that not only was T.S. WARREGO awarded the title of most efficient Unit in N.S.W.—but are also assessed as the most efficient Unit in Australia. This is a very great honour and we extend our heartiest congratulations to the Commanding Officer, S.C. Lt. Wheeler, his Officers, Instructors and the Sea Cadets themselves.

Parades, by Units at various local functions, as well as the more and better known occasions, i.e., Trafalgar Day, Annual Dinner, Christmas Seamen's Day, as well as the more obvious, i.e., the visit of the Duke of Edinburgh, all received the required response.

The Efficiency award for 1965 will be announced at the Annual Ball of the Royal Australian Navy League of Australia (N.S.W. Division). The Unit presently is based on the Macquarie High School and although the initial response to calls for Youths to join was somewhat disappointing, it is hoped that with the early acquisition of some land and the erection of Headquarters Buildings the numbers will rapidly reach the required minimum establishment to become eligible for recognition by the Naval Board.

A lease for a further block of land for T.S. ALBATROSS has been successfully negotiated.

The Efficiency award for 1964 has yet to be notified official announcement, but we are very proud to announce that not only was T.S. WARREGO awarded the title of most efficient Unit in N.S.W.—but are also assessed as the most efficient Unit in Australia. This is a very great honour and we extend our heartiest congratulations to the Commanding Officer, S.C. Lt. Wheeler, his Officers, Instructors and the Sea Cadets themselves.

Parades, by Units at various local functions, as well as the more and better known occasions, i.e., Trafalgar Day, Annual Dinner, Christmas Seamen's Day, as well as the more obvious, i.e., the visit of the Duke of Edinburgh, all received the required response.

The Efficiency award for 1965 will be announced at the Annual Ball of the Royal Australian Navy League of Australia (N.S.W. Division). The Unit presently is based on the Macquarie High School and although the initial response to calls for Youths to join was somewhat disappointing, it is hoped that with the early acquisition of some land and the erection of Headquarters Buildings the numbers will rapidly reach the required minimum establishment to become eligible for recognition by the Naval Board.

A lease for a further block of land for T.S. ALBATROSS has been successfully negotiated.

The Efficiency award for 1964 has yet to be notified official announcement, but we are very proud to announce that not only was T.S. WARREGO awarded the title of most efficient Unit in N.S.W.—but are also assessed as the most efficient Unit in Australia. This is a very great honour and we extend our heartiest congratulations to the Commanding Officer, S.C. Lt. Wheeler, his Officers, Instructors and the Sea Cadets themselves.

Parades, by Units at various local functions, as well as the more and better known occasions, i.e., Trafalgar Day, Annual Dinner, Christmas Seamen's Day, as well as the more obvious, i.e., the visit of the Duke of Edinburgh, all received the required response.

The Efficiency award for 1965 will be announced at the Annual Ball of the Royal Australian Navy League of Australia (N.S.W. Division). The Unit presently is based on the Macquarie High School and although the initial response to calls for Youths to join was somewhat disappointing, it is hoped that with the early acquisition of some land and the erection of Headquarters Buildings the numbers will rapidly reach the required minimum establishment to become eligible for recognition by the Naval Board.

A lease for a further block of land for T.S. ALBATROSS has been successfully negotiated.
Southern Cross & Northern Star

One Class travel in air-conditioned comfort with the latest in amenities.

- Every Cabin Air-conditioned
- Swimming Pools and Lido
- Tavern Night Club
- Elevators
- Large Sports Areas
- Orchestra
- Children's Playrooms
- Stabilizers

Single Fares to South Africa from £A117
Single Fares to England from £A188

SHAW SAVILL LINE
8A CASTLEREAGH ST., SYDNEY. Phone 281121

WATSON CRANE PTY. LIMITED

- MANUFACTURERS AND DISTRIBUTORS OF
 All Standard and Special Brassware Fittings, including the "WATCRANE"
 Spring Cock, for the Plumber and Hot Water Engineer.
- SUPPLIERS of
 Full range of Gunmetal, Cast Iron and Steel Valves for Water, Air, Oil and
 Steam; Baths, Basins, Lowdown Suites, Heaters and "IDEAL" Hot Water
 Boilers.
- ELECTROPLATING SPECIALISTS in
 Chrome, Silver, Nickel, Cadmium and Tin.
- FOUNDERs of
 Non-ferrous Castings and Hot Pressings, etc., in Brass, Gunmetal, Phosphor
 Bronze, Aluminium Alloys.
- DIE MAKERS

WORKS AND FOUNDRY:
Fairfield Street, Villawood, N.S.W. Phone: 07-7171
WAREHOUSE:
1037-1047 Bourke Street, Waterloo, N.S.W. Phone: 69-5761

RAPLAG
PIPE INSULATION

Economical to buy, easy to apply...quickly into position without fussy clips and wrappings...RAPLAG is designed to save man hours and initial cost when a pipe run is lagged. RAPLAG is an entirely new form of pipe insulation—12 ft. flexible lengths of foamed polyurethane bonded to a tough P.V.C. cover with integral lips for fastening. It can be fitted instantly with bare hands and is accurately profiled to ensure a perfect fit. RAPLAG fits easily around slow bends, sockets, unions and similar fittings and simple cutting on site with knife or scissors prepares it to cover acute bends, elbows and tee junctions. Hard usage will not crush or shatter it or reduce insulating efficiency. Raplag has been proved in thousands of applications in the United Kingdom with sales of over 1,000 miles of Raplag annually.

OTHER BIG ADVANTAGES OF RAFLAG:
- Equally suitable for hot and cold water and for steam and all heated lines up to 320° F. (160° C).
- Sizes to suit steel pipes from ½" up to 8" nominal bore and copper pipes from 1½" to 2" O/D. Two thicknesses—⅜" and 1".
- High thermal efficiency: k = 0.29 B.Th.U./ft.²/°F/hr. at 100° F. mean face temperature.
- Supplied in 12-foot lengths with instructions.
- Neat exterior—can be wiped clean with a damp cloth.
- Re-usable and resistant to water, oil and many chemicals.

WRITE TODAY FOR FULL INFORMATION ON NEW RAFLAG

Please send me further information on new Raplag.

NAME ___ ___
COMPANY ___ ___
ADDRESS ___ ___

Mail coupon to The Manager, Bell's Asbestos & Engineering (Australia) Ltd., 13 Foveaux St., Sydney, N.S.W. or to your local Bell's office.

SEPTEMBER-OCTOBER, 1964
NAVY WEEK IN SYDNEY
DISPLAY AT GARDEN ISLAND, OCTOBER

KEY TO GARDEN ISLAND DISPLAYS
1. Submarine in outer Captain Cook Dock.
2. Floating Dock.
3. Main Workshops.
4. Helicopter and Diving Display.
6. Ferry Landing, Ferry Wharf.
7. Lost Children.
8. Ladies' Rest Room.
9. First Aid.
10. Ladies' Toilets.
12. Dockyard Chapel.

NOT OPEN TO THE PUBLIC

FERRY LANDING

NOT OPEN TO THE PUBLIC

FERRY LANDING
NUCLEAR PROPULSION FOR NAVAL VESSELS

The following paper discusses the advantages and economics of nuclear powered naval vessels. It appears that the increased effectiveness of nuclear-powered submarines and major surface vessels far outweighs the additional cost.

A major limitation upon the tactics and effectiveness of warships is imposed by the need to refuel at frequent intervals—of the order of two or three days for small, fast ships during periods of sustained high speed operation. Refuelling facilities can be obtained from land-based installations, from large ships with greater carrying capacity or from specialised oil tankers.

However, large warships must themselves refuel. In the absence of accompanying fast tankers, an operational task force generally arranges to rendezvous with shore-based tankers at regular intervals. In addition to the inconvenience, such a system obviously requires a large and widely dispersed refuelling organisation to give any scope to naval operations and this will be vulnerable to enemy attack in times of war. Furthermore, warships themselves are particularly vulnerable to attack during the refuelling operation.

Virtually complete freedom from these limitations is provided by the adoption of nuclear propulsion. Periods between refuellings are then of the order of years. It clearly cannot free ships from the need for other supplies, but the small size of nuclear power plant, compared with conventional boilers and (Continued on page 27)

The huge flight deck of ENTERPRISE covers 4½ acres.

One launch of her aircraft from her 4½-acre flight deck could unleash more destructive power than all the aircraft strikes in World War II.

Four steam catapults enable ENTERPRISE to launch her planes at the rate of one every fifteen seconds.
H.M.A.S. WATSON — Open Day
5th OCTOBER, 1964

The first major function during the 1964 Navy Week in Sydney will be at H.M.A.S. WATSON, when this establishment will be open for public inspection from 1 p.m. to 5 p.m., on Monday, 5th October.

How to Get There
H.M.A.S. WATSON is located at South Head, with an Army establishment adjoining. The entrance gates are in Cliff Street, Watson’s Bay. Buses from Central Railway (Eddy Avenue), Bridge Street, corner of Park and Elizabeth Streets, and Kings Cross terminate at Watson’s Bay, approximately 300 yards from the entrance gates. Naval buses will then be available to take you to H.M.A.S. WATSON.

Visitors arriving by private car should drive through the entrance gates. They will then be directed along Watson Drive to a car park.

Short History of H.M.A.S. WATSON
The establishment first commenced in the early years of the Second World War, when the need arose for a school in which to train operators of Radar, which had recently come into service in the R.A.N. The establishment was enlarged considerably in 1944, and in 1945 it was officially commissioned as H.M.A.S. WATSON.

In the meantime, navigation training had commenced at WATSON, and the two types of training were combined, under the title of Navigation Direction School.

The Torpedo Anti-Submarine School, which has been located at Rushcutters Bay, moved into its fine new building at WATSON in 1956, and, following this, new accommodation buildings, dining hall, galley and amenities buildings for all ratings, plus a new Administration building, have been completed.

The new Chapel will also be open for inspection during the afternoon.

Torpedo Anti-Submarine Displays and Demonstrations
1.—Within the School there will be displays of torpedo anti-submarine equipment. Anti-submarine attack teams will show visitors how submerged submarines are detected and the sequence of events leading up to attacks by anti-submarine mortars.

2.—Perhaps the most spectacular events will be the anti-submarine mortar firings and the demonstrations by Naval Clearance divers.

3.—Visitors will see at first-hand how the mortars are fired, in exactly the same way as in anti-submarine ships of the Royal Australian Navy.

4.—Naval Clearance divers will demonstrate in Lady Bay how they enter the water and are retrieved by a fast-moving boat so that they may carry out their mission in enemy waters and make good their escape as quickly as possible.

Navigation Direction Displays
In the Action Information Training Centre and Radar Block available radar sets will be operating. Here, the visitor may witness how ships and aircraft are located by radar, and their movements plotted, so that the captain of a ship can see immediately the disposition of friendly and enemy forces, and make his plan for attack.

Refreshments
Around the establishment visitors will find refreshment stalls to cater for their immediate requirements, and afternoon tea may be obtained in the Amenities Building at 3.30 p.m.

Ratings Accommodation and Amenities
The lower floor of the northern Junior Ratings’ Accommodation Block will be open, so that visitors may see the comfortable living conditions in H.M.A.S. WATSON.

Inspection of the first floor of the Amenities Building shows how pleasantly ratings may spend off-duty hours, with provision for wet and dry canteens, billiard and reading rooms, and television. On the ground floor of this building is a modern galley and first-class dining hall, with a seating capacity of 400.

Cinema
The cinema in the T.A.S. School will be operating throughout the afternoon, showing a film titled “This Is Torpedo Anti-Submarine”.

Helicopters
A helicopter will be on display, and will be used to drop clearance divers in Lady Bay. It will operate from 2 p.m. to 2.15, and from 3.30 p.m. to 3.45 p.m.

A Wessex helicopter, which is probably the most up-to-date anti-submarine helicopter in the world, will fly over H.M.A.S. WATSON during the afternoon, and will give a display at 2 p.m. in Lady Bay.

PROGRAMME OF DISPLAYS
Anti-Submarine Attack Demonstrations
1.45 p.m., 2.15 p.m., 2.45 p.m., 3.15 p.m., 3.45 p.m., 4.15 p.m.

Teams will show how attacks on submarines are made, using underwater detecting devices. The demonstration will take place in the T.A.S. School.

Anti-Submarine Mortar Firings
1.15 p.m., 2.30 p.m., 4 p.m.

These firings will simulate attacks on enemy submarines, and will take place at the rear of the T.A.S. School.

Clearance Diving Demonstrations
1.45 p.m., 3.15 p.m.

Clearance divers will simulate action in clearing an enemy beach-head of obstructions. This will take place in Lady Bay, at the rear of the T.A.S. School.

Navy League Annual Ball
The annual Navy League Ball will be held this year at Princes Restaurant on Friday, 16th October, at a cost of £6/6/- per double.

Members wishing to attend the Ball should contact: Mrs. H. G. Burgin, 27 Birdwood Avenue, Killara (Tel. 49-1680) or Mrs. R. Humbley, Flat C, 22 Wyde Street, Potts Point (Tel. 35-1498).
NUTRITION FOR NAVAL VESSELS

Let us assume that the keel of "Nautilus" was laid in the yard of Electric Boat on June 14, 1952, and the vessel was commissioned on September 30, 1954. "Nautilus" performed up to and beyond specification in every way, and her exploits have since become legendary.

The U.S. Navy has continued a vigorous program of constructing nuclear powered submarines of various types. By September, 1963, it had 32 commissioned, a further 16 launched, 16 under construction and 23 more authorized. The great majority of these are powered by the S5W reactor, designed by Westinghouse, which was first installed in the "Skipjack" (commissioned on April 15, 1959). However, prime contracting for the reactor plant is now shared with General Electric.

Seven shipbuilders have shared construction work (six, allowing for the recent take-over of Bethlehem Steel's Quincy yard by Electric Boat), with a reactor of similar principle assigned to a consortium of Electric Boat, General Electric, Vickers, Rolls-Royce and Foster-Wheeler (known as Vickers Nuclear Engineering), and reactor development work started at Rolls-Royce (Derby) and A.E.R.E. (Harwell) in 1956.

However, in 1958, agreement was reached to purchase an S5W core from Westinghouse for Britain's first nuclear submarine, and the firm of Rolls-Royce & Associates (staffed from the same three British firms) was set up to handle the transaction. Simultaneously, Rolls-Royce was authorized to become the first private fabricator of nuclear fuel in the United Kingdom, so that it could manufacture replacement fuel elements and further reactor cores.

The "Dreadnought", powered by this Westinghouse reactor, core was commissioned on April 17, 1963. "Valiant", to be powered with a reactor of similar principle designed and built by Rolls-Royce & Associates, has been launched at Vickers' Barrow-in-Furness yard; five more nuclear submarines have been ordered (three from Vickers and two from Cammel Laird), and the firm of Rolls-Royce & Associates (staffed from the same three British firms) has recently been announced by the British Government. Reactors for all these ships will be...
France plans to build three nuclear powered submarines, to come into operation by 1973. Their pressurised water reactor plant is being developed independently, and the land-based prototype at Cadarache is expected to start up during 1964.

Canada plans to build two nuclear submarines. It is expected that the first will be powered by a Westinghouse built S5W and the second by a similar reactor built in Canada.

According to the 1963-64 edition of "Jane's Fighting Ships", the Russian Navy has 26 nuclear submarines and is adding to this at the rate of one a month.

Surface Ships

Three nuclear powered naval surface vessels have been constructed and commissioned in the U.S.A.—the cruiser "Long Beach", the aircraft carrier "Enterprise" (both commissioned in 1961), and the destroyer leader "Bainbridge" (1962). A further destroyer leader ("Truxtun") authorised in 1961, is now under construction.

No further projects of this type have been started, pending operating experience with the existing ships. However, although they have met and exceeded their specifications, this hiatus has continued. A destroyer, authorised in 1962, has been cancelled (because its missile system was not ready). A new aircraft carrier (CVA-67) is to be built with conventional power plant. It would appear an unfortunate possibility that the history of the ill-founded initial lack of faith in nuclear submarines is to be repeated for surface vessels.

Reactors for Naval Propulsion

The S5W, which is the standard U.S. submarine reactor and is also used in the first British submarine, is a pressurised light water cooled and moderated reactor. An attack submarine powered by one such reactor has a range of at least 120,000 miles at full power or 3,000 full-power hours between refuellings (equivalent to two or three years' normal operation according to American experience). The first polaris submarine "George Washington", operated for 4½ years on its first core. Between refuellings only maintenance is necessary to keep the reactor operational, and experience has shown that the nuclear plant gives less trouble than conventional machinery.

The power plants used in "Long Beach" (C1W) and "Enterprise" (A2W) were designed by Westinghouse and based upon units similar to the S5W, but...
Getting there is half the fun.

The extra personal values of an Atlantic crossing with Cunard can't be measured by the modest amount you pay for it. Where else in the world (except in the sterilizer-equipped superliners 'Queen Elizabeth' and 'Queen Mary') could you find such a tension-free existence? Savour the flawless hospitality and gourmet offering of the sophisticated company wherever you go among the many acres of broad sports decks.

Sail the Atlantic Fairway with Cunard.

Enjoy informal invitations and congenial company wherever you go among the many spacious public rooms. Swim, dance, party-go... discover leisured new uses for unpressured spaces, dispel cares, create enchantment.

-A member of the McDonald Industries Group.

Recommend Zinkote* for Pipelines
- Especially recommended for Pipelines
- Non-toxic
- Non inflammable
- Insoluble in hydrocarbons
- Solvent resistant
- One coat application
- Sprays or brushes on in shop or field
- Dries quickly
- Self-curing

Manufactured and Distributed by
EMAR ENGINEERING SERVICES PTY. LTD.
(A member of the McDonald Industries Group)
282 COWARD STREET, MASCOT, N.S.W. - Telephone: 67-3791

SEPTEMBER-OCTOBER, 1964

*Recommended for Pipelines, Tanks, Structural Steel, etc.

about 50 per cent larger, generating about 100 MW of heat at full power (equivalent to about 35,000 s.h.p.) “Long Beach” has two such units and “Enterprise” eight. “Rainbridge” is powered by two D2G reactors, designed by General Electric (U.S.), which are pressurised water reactors of much the same principle as the SSW and about the same full-power core life.

Work is being directed towards prolonging the core lifetime of all these reactors, but this development is limited by the metallurgical endurance of the fuel. During its residence in a reactor, a fuel element becomes damaged by corrosion, fast neutrons, fission product accumulation, thermal cycling, steady thermal stresses, and so on. Metallic fuels are limited mainly by fission product swelling; ceramic fuels by swelling and thermal shock.

It is believed that the SSW core is based on zircloay clad, uranium-zirconium alloy fuel, incorporating 93 per cent enriched uranium. The burn-up capability of this material is of the order of about one per cent (10,000 MW/day-ton). Improvement on this performance may be possible after further development, but at least double this burn-up is already considered a reasonable target for ceramic fuel elements (say stainless steel clad uranium dioxide) in land based nuclear power stations. “Cernet” fuels, containing ceramic fuel particles dispersed in a non-fissile metallic matrix, could further increase this by a large factor.

There are practical problems associated with the use of either of these latter fuel materials in marine reactors, but the kind of development which might be anticipated in future core design is clear. Some advanced fuel materials might possibly be used in fabricating replacement cores for existing reactor plant. An increase of at least 100 per cent has already been obtained in the range of the “Nautilus” since her first core was installed. The ultimate aim is a reactor core with the same lifetime as the SSW.

Other developments in marine reactor technology which are currently in progress are:

(a) The D1W project (Westinghouse) aimed at producing a 60,000 s.h.p. system with a single reactor the same size as two D2G’s. This could be used to power ships smaller than 8,000 tons, which appears to be the present lower practical limit. Four such units could be used to propel an aircraft carrier of the size of “Enterprise”. The U.S. Navy and the U.S.A.E.C. claim that a four reactor carrier propulsion system, with a seven year core life, is now available.

(b) The SSG project (General Electric) aimed at producing a submarine reactor with natural circulation cooling. This would reduce complexity and cost, and increase reliability.

(c) The Dounreay submarine prototype (Rolls-Royce) aimed at producing an independent British design. A feature of this plant is the use of low alloy steel, instead of stainless, in the coolant circuits. This would reduce cost and remove much of the danger of chloride corrosion to which stainless steel is particularly prone.

Any advanced industrial nation could probably develop a
From his very beginning wood has been man's best and oldest friend. It was of wood that he made his first fires, fashioned his first weapons, erected his first shelter. It was a red-letter day in man's conquest of the sea when a floating log bore him across a stream. With awakening understanding he wrought from the log a canoe. And thus, in his first tiny wooden craft he searched for and found new hunting grounds and new peoples. He came to understand the pulse of the ocean and the way of the wind. His canoes grew to caravels, to clippers, to ships of the line. In them he ventured beyond the horizon's rim, and the seaways and the havens of the world came to know the form of timbered hulls and the spread of wooden spars. Wood alone made it possible for man to explore and conquer, to merge and mingle, to trade treasure and exchange ideas with lands and peoples across the sea.

With the help of modern research, the range of uses of wood is being constantly extended. New values in engineered timber construction; new beauties in the application of wood are continually being discovered. Small wonder, then, that wood has proved man's best and oldest friend.

WALLIS BROS. PTY. LTD.

TIMBERMEN SINCE 1838

"Loyalty to the Spirit of Things Well Done"

nuclear propulsion plant for itself. However, the cost of such work (around a billion dollars to date in the U.S.) would be extremely high.

The Need for Nuclear Propulsion of Naval Vessels

The overriding advantages of nuclear propulsion for submarines have been amply demonstrated by American experience, even for minor tactical missions. It is reported that the first nuclear surface vessels have also proved "very much superior" to conventional vessels in all operational circumstances. This factor does not yet appear to be fully acknowledged by the U.S. Department of Defence, in view of their decision to construct an aircraft carrier with conventional propulsion.

As a result of this attitude, the Joint Committee on Atomic Energy (J.C.A.E.) of the U.S. Congress met to consider the question and the future of nuclear power for the Navy. During these hearings, naval officers who had commanded nuclear warships in normal peacetime operations and during the Cuban crisis testified to their superiority over conventional vessels. Many advantages of nuclear propulsion were cited, including:

(a) Virtually unlimited endurance at full speed, which also results in (i) tactical flexibility, (ii) improved operation in bad weather, (iii) reduced vulnerability to submarine and missile attack, and (iv) independence from fuel supplies.

(b) Ability to act with complete independence under threat or emergency.

(c) Increased space available (30 per cent in the case of CVA-67) to carry fuel for aircraft and conventional escorts, ammunition, etc., and hence further reduction in dependence upon logistic support.

(d) Reduced trimming problems connected with fuel use.

(e) Quick start-up and load change capability of the power plant, resulting in greater manoeuvrability and faster response.

(f) Ability to seal the ship against radio-active fall-out and chemical and biological warfare, as a result of the absence of air intakes for boilers.

(g) Absence of corrosive stack gases and exhaust turbulence (particularly important in the case of aircraft carriers).

IF ONLY THEY'D BOOKED THROUGH UNION!

The most carefree way in the world to see the world is to let Union Travel Service take care of the details. Put your itinerary into their expert hands and there are no missed connections, no accommodation upset, no passport problems.

For travel anywhere ... by SEA, AIR or LAND book through any office of

UNION TRAVEL SERVICE

UNION STEAM SHIP Co. of N.Z. LTD. (Inc. in N.Z.)

Principal Passenger Agents for the Searoad Service to Tasmania by "Princess of Tasmania" and "Empress of Australia."

Bookings for all major shipping and overseas airlines

Sydney—"Union Home", 347 George Street. 2-0028; or Cnr. Pitt Street and Martin Place. 25-2923

Newcastle—31 Watt Street

Port Kembla—46 Wentworth Street

Branches and Agencies throughout Australia and New Zealand.
The J.C.A.E. in its report, made it clear that it did not address itself to the question of whether aircraft carriers or any other types of naval ships should or should not be built. However, it was the belief of the Committee that, if warships are built of the type for which nuclear powerplants have been developed, they should be propelled by nuclear power.

An examination of the proceedings of the J.C.A.E. hearings reveals no reason for disagreeing with its conclusions. That disagreement did previously exist is evidenced by the necessity for the hearings, and the decision to build CVA-67 as a conventional carrier has since been upheld. It is to be expected that doubts will be dispelled eventually, but in the meantime, billions of dollars may be spent upon ships equipped with conventional power, which are expected to last for 25 years.

The U.S. Navy would like to adopt 100% nuclear power for all surface vessels over 8,000 tons, as well as for submarines, and seems likely to receive Congressional support for this. Its plans include the construction, by 1980, of from five to eleven new nuclear propelled task groups, each consisting of one aircraft carrier, one frigate and three or four destroyers. This would result in an eventual total of up to 73 nuclear surface ships.

It might be argued that many of the reasons making the adoption of nuclear propulsion virtually imperative for the U.S. Navy are not applicable to other countries. In particular:

(a) The U.S. Administration is in a position, probably enjoyed by no other government, to devote virtually unlimited funds to any defence project which it considers necessary to maintain the freedom of the nation.

(b) The U.S. have taken upon themselves a worldwide strategic military role which is not incumbent upon any other nation.

(c) In an extreme crisis requiring the best armaments, any ally of the U.S. can probably count upon the support of the U.S. forces.

Against these arguments, it must be remembered that nuclear warships are superior to conventional for any purpose. In attempting to evaluate this increased effectiveness numerically, the U.S. Navy found that it considerably exceeded the proportionate increase in overall cost.

Costs and Effectiveness

The initial capital cost of any nuclear powered vessel is appreciably more than its conventional equivalent, although the gap closes with development and mass production. The total cost of the 3,180 ton "Nautilus" excluding development, was $90 million. The cost of 3,747 ton submarines now being commissioned in the U.S. is $49 million, and of 7,000 ton submarines (including the Polaris missile system) $109.5 million. The cost of the SSW reactors has been reduced from $18 million (for "Skipjack") to $5.4 million.

The costs of the three American nuclear surface warships which are the first of their kind ever built, compared with the costs of their conventional counterparts, are shown in the table below.

Comparisons of this nature are complicated by the fact that nuclear powered ships design generally seem to be bigger than their conventional counterparts and all prototype nuclear ships so far have carried novel and highly expensive electronic equipment which has nothing whatever to do with the nature of the propulsion system.

Nuclear power also possesses the potential advantage of providing increased speed without any significant loss in range. No appreciable use of this characteristic appears to have been made in the design of surface ships as yet.

A detailed assessment of the additional cost attributable to nuclear propulsion would have to be made on the basis of a specific defence project which it considers necessary to maintain the freedom of the nation.

Any detailed assessment of the additional cost attributable to nuclear propulsion would have to be made on the basis of a specific defence project which it considers necessary to maintain the freedom of the nation.

JOIN THE NAVY LEAGUE

The object of the Navy League in Australia, like its older counterpart, the Navy League in Britain, is to interest by all means at its disposal upon the vital importance of Sea Power to the British Commonwealth of Nations. The League sponsors the Australian Sea Cadet Corps by giving technical sea training to and instilling naval training in boys who intend to serve in Naval or Merchant services and also to those sea-minded boys who do not intend to follow a sea career, but who, given this knowledge will form a valuable Reserve for the Naval Service.

The League consists of Fellows (Annual or Life) and Associates. All British subjects who signify approval to the objects of the League are eligible.

MAY WE ASK YOU TO JOIN and swell our members so that the Navy League in Australia may be widely known and exercise an important influence in the life of the Australian Nation?

For particulars, contact The Secretary, 60 Clarence Street, Sydney, N.S.W., or The Secretary, Room 8, 8th Floor, 528 Collins Street, Melbourne, C1, Victoria.

or one of the Hon. Secretaries at:

Box 3716, G.P.O., Brisbane, Queensland

11 Queen Street, Sandy Bay, Hobart, Tasmania

C/- H.M.A.S. "Melville", Darwin, N.T.

30 Pirie Street, Adelaide, S.A.

182 Coode Street, Conn, W.A.

32 Limestone Ave., Ainslie, Canberra, A.C.T.

MARTIME MAINTENANCE PTY. LTD.

For:

- Rust Elimination
- Tank Cleaning
- Flame Scaling
- Cleaning and Painting
- All forms of Ships' Husbandry and Service

Consult:

MARTIME MAINTENANCE PTY. LTD.
Shell House, Sydney
29-1488 37-8106
(Day) (Night)

BRETT is still the leading name in CANVAS

For:

- Tents
- Boat Covers
- Ships' Canvas
- Flags and Buntings
- Blinds and Awning
- Life Jackets and Buoy
- All Canvas Goods

Consult:

E. H. BRETT & SONS PTY. LTD.
4 Brett Ave., East Balmain
82-0711 Sydney 82-0711

SEPTEMBER-OCTOBER, 1964

THE NAVY
tific design. For example, the estimated cost of the nuclear carrier proposed in place of the conventional CVA-67 was $440 million, compared with $277 million for the conventional vessel. The difference of $163 million was made up as follows:

Increased size
Additional squadron of aircraft
First nuclear core (fuel, control rods, etc.)
Reactor installation, etc.

$163 million

The last item includes the improvements in all-round performance made necessary by the increased performance and reliability demanded of a nuclear ship. Some saving would therefore result, over the life of the vessel, from reductions in the cost of maintenance and time out of service. Because of these difficulties in distinguishing comparisons, the U.S. Navy was asked to prepare a quantitative comparison of the effectiveness of the proposed conventional and nuclear carriers referred to above. By assigning numerical values where possible to the various performance aspects of existing and conceptual carriers, such as vulnerability to attack, response time, staying power and so forth, it was deduced that the nuclear CVA-67 would be 21 per cent more effective than the conventional CVA-67.

In the case of submarines, the overwhelming superiority of nuclear propulsion would make a realistic comparison upon these lines virtually impossible. Although the difference in concept between nuclear and conventional surface ships is less obvious, it was readily admitted that this estimated increase in effectiveness was highly conservative.

As the J.C.A.E. pointed out, this analysis is "based on the assumption that, in wartime, logistic support forces will be able to operate unhampered and without losses as they do in peacetime. The defect in this analysis is immediately apparent."

Even on this basis, however, the additional capital cost attributable to the reactor installation (about 25 per cent leaving out the fuel) is very nearly justified. However, a further factor to be taken into consideration is that the additional cost of nuclear propulsion becomes small when compared with the total costs of owning and operating a major warship. As recorded in the J.C.A.E.'s report "the total lifetime cost of the conventional carrier with its aircraft is estimated to be only about three per cent more than the lifetime cost of the conventional carrier with its aircraft."

The Department of Defence, which was arguing against the introduction of nuclear power in warships, itself would not put this higher than 10 per cent, and these figures take no account of the worldwide oil distribution system required for conventional ships.

The above costs all refer to work executed in the U.S. for the U.S. Navy. Equivalent costs from U.K. sources might well be substantially different.

Conclusions

As a result of American experience, it can definitely be concluded that the adoption of nuclear propulsion leads to the most effective military vessels.

It also appears that nuclear propulsion gives the best value for money when applied to larger warships. All doubts on this point have now been dispelled in the case of submarines, but there is still some dissention regarding surface vessels. The basis for such reservations is not altogether clear but appears to be connected mainly with the high initial cost of nuclear ships. However, the total cost of nuclear propulsion spread over the life of such a ship would not be very great compared with the total cost of the ship.

There may also be some residual doubts as to whether the future of military shipping does, in fact, lie with nuclear power. However, it is difficult to see how any semblance of reliability could be maintained without the best ships, and it is becoming increasingly clear that the transition to nuclear propulsion is inevitable as from sail to steam and from coal to oil fuel in the past.

It is now acknowledged that arguments against the introduction of nuclear powered submarines 10 to 15 years ago, ignored the fact that they are not merely better than conventional submarines but can perform functions which conventional submarines cannot perform today. Arguments against nuclear propulsion for surface vessels appear to have the same false basis. There are many subsidiary advantages to nuclear propulsion, but its essential feature is virtually unlimited full-speed endurance.

The benefit of this independence is even more marked for surface vessels than for submarines because of their higher conventional speeds. However, nuclear submarines have the additional advantage that the severe limitation on submerged endurance imposed by conventional power plant is removed completely.

The standard reactor for submarine propulsion in the U.S. Navy is the Westinghouse-designed pressurised water reactor, SSW. A reactor of similar principle is being developed by Rolls Royce for the Royal Navy. The adoption of one of these two designs is virtually essential for any such craft built in the near future. Similar reactors have been developed in the U.S. for application to surface vessels.

This paper is not concerned with naval strategy or with the number and type of naval vessels required in any circumstances. However, it concludes that non-nuclear military vessels are greatly inferior to nuclear in performance and effectiveness. In the case of submarines and major warships, the adoption of conventional propulsion for new vessels could be false economy for any country wishing to make a real contribution to sea power.

Since developments in this field are taking place so rapidly in relation to the life of ships, it is important to recognise this at an early stage now that nuclear propulsion is a reality.

The author would like to thank the U.S.A.E.C. for permission to publish the illustrations.

"DUCHESS" READY SOON

H.M.A.S. DUCHESS, the Daring Class destroyer on loan to the Royal Australian Navy from the Royal Navy, will complete her refit at the Williams-town Naval Dockyard in Melbourne next month.

The destroyer will go to sea for the first time as an Australian ship at the end of September.

DUCHESS was due for a scheduled refit when she arrived in Australia from Singapore in April. During the refit, some improvements have been made in crew habitability, including air conditioning in the mess decks.

After a preliminary "work-up" in Victorian waters, DUCHESS will undertake a comprehensive exercise period off the coast of New South Wales. She is due to sail for service with the British Commonwealth Strategic Reserve in South East Asian waters towards the end of the year.
Book Review:

CONVOY ESCORT COMMANDER, by Vice Admiral Sir Peter Gretton.

Publisher: Cassell & Co. Ltd., London (Price in Aust.: 44/9, post and packing 1/9).

The writer presents the record of his command of a British escort group in the Atlantic during World War II, with admirable modesty and an engaging sense of humour. Curiously, this light touch seems to heighten the tension and the horror of some of the decisions that had to be made, rather than detract from it. His accounts of the early convoys, when the merchantmen's signalling was not so good, and the routine of convoy work was new to everyone, when ships strayed off and had to be chased up, rather like wandering sheep, is hair-raising, and really funny. This is a very readable book, and the author emerges as an attractive character, as well as a strong and dedicated commander. The photographs are interesting, but fairly run of the mill, except for one impressive shot opposite page 160, North Atlantic convoy weather. Vice Admiral Sir Peter Gretton, then a mere First Lieutenant, takes this sort of weather in his stride, as he does disasters, such as damaged steering. When this happened in April 1940 in Narvik harbour, his ship having been hit several times, it became increasingly evident that all was not well below, 'and despite the fact that the telegraphs had been put to full speed astern, we were firmly heading for the shore at the south side of the harbour.'

However, as the book progresses, so also does the seriousness of the war, and the author writes with feeling and sensitivity of the men lost overboard. This is a very readable book, and the author emerges as an attractive character, as well as a strong and dedicated commander. The photographs are interesting, but fairly run of the mill, except for one impressive shot opposite page 160, North Atlantic convoy weather. Vice Admiral Sir Peter Gretton, then a mere First Lieutenant, takes this sort of weather in his stride, as he does disasters, such as damaged steering. When this happened in April 1940 in Narvik harbour, his ship having been hit several times, it became increasingly evident that all was not well below, 'and despite the fact that the telegraphs had been put to full speed astern, we were firmly heading for the shore at the south side of the harbour.'

However, as the book progresses, so also does the seriousness of the war, and the author writes with feeling and sensitivity of the men lost overboard.

ANARE RELIEF VOYAGE TO MACQUARIE ISLAND

Dr. P. G. Law, C.B.E., Director of the Antarctic Division of the Dept. of External Affairs, has written to say he has selected the two Sea Cadets to accompany the ANARE relief voyage to Macquarie Island next December. It was also pleasing to hear from him that, because the standard of all the Cadets nominated was extremely high, he found great difficulty making his final decision.

The Cadets successful were Thomas Crofton Brown of the Western Australian Division and Bruce Eddes of the New South Wales Division. Paul Howard Martin of the South Australian Division has been named as a Reserve in case either of the two chosen find that, for some reason, they have to withdraw between now and December.

Comment was made that Cadet McConnell of Queensland was too young but that he should have a good chance another time.

Later in the year, the Antarctic Division will communicate with Cadets Brown and Eddes advising them details of the arrangements for their departure and the equipment they will need.

The Federal Executive would like to extend their congratualations to the two Cadets selected and wish them a successful and happy voyage. We would remind those who were not fortunate enough to be chosen of the Director's words on the standard of those who presented themselves for interview and we wish them every success in the future.
H.M.S. HAMPShIRE, the second of the Royal Navy's new County Class Guided Missile Destroyers, was launched on 16th March, 1961, by her Royal Highness the Princess Margaret at Clydebank. HAMPShIRE was built by Messrs. John Brown Ltd., and was commissioned for service on 15th March, 1963 in the presence of H.R.H. the Princess Margaret.

Ships of the County Class are well equipped for the many tasks which they may be required to carry out, being fitted with all the latest equipment for the detection of enemy aircraft, submarine and surface ships. A twin Seaslug surface to air guided missile launcher is located on the quarterdeck while Seacat close range surface to air guided missiles are sited on either side of the helicopter hangar.

In addition the ship's Wessex helicopter carries equipment for the detection of submarines, and homing torpedoes with which to attack them.

The ship's propulsion machinery consists of two sets of Steam Turbines and four Gas Turbine units. The latter can be used by themselves in an emergency, without the delay involved in raising steam. Speed is in excess of 30 knots.

Four sets of stabilisers are fitted, to keep the ship steady in rough weather. The ship can be steered automatically.

Vital Statistics:
- **Displacement:** 6,000 tons
- **Length:** 517 feet
- **Beam:** 54 feet

Ship's Company:
- 36 Officers
- 420 ratings

Accommodation and living conditions are of a very high standard. Extensive use has been made of modern materials and techniques which reduce the cleaning and maintaining effort. All ratings sleep in bunks, and meals are served in a cafeteria. The ship is air conditioned throughout.

ABMM offers 149 different copper alloys to solve your metals problems—profitably

(The use of coppermetals in your industry is limited only by imagination—and we can supply this, too)

Copper's outstanding combination of properties and its compatibility with other metals and materials in all climatic conditions make it a highly desirable metal for a countless number of applications, either in its pure or alloyed form. Think about the products your company makes. Do you need corrosion resistance? Electrical conductivity? Superior tensile strength? Ease of machining and fabrication? A metal that solders, welds, brazes easily? A metal, which in its finished form, is chosen for its beauty? These are some of the reasons why the coppermetals are being widely used in so many industries. When you look over the composition and physical properties of the 149 or so alloys we supply now, you will surely find one that meets your particular job requirements.

Through the ABMM research and development programme, new products and new fabricating techniques for the coppermetals are continually being introduced.

When you call in the man from ABMM to discuss your problems, he has behind him the resources of the largest producer of copper sheet, strip, rod, wire and tube in the Southern Hemisphere.
Chart your own course to adventure!

Pack an exciting lifetime into a few weeks or days. In the big P & O - Orient ships—the largest and fastest sailing the seven seas—the Pacific and Indian Oceans, or both, can be your holiday playground.

P & O - Orient Vacation Voyages provide a magical way of life and travel, quite unlike any other. On board, you'll be pampered, just as you want to be and should be on the perfect holiday. You'll store up endless memories of fascinating countries and strange customs.

The many and varied opportunities for P & O - Orient mainline Vacation Voyages are complemented by short holiday cruises at all seasons. Ask for our "Vacation Voyages 1965" brochure detailing over 40 Sea or Sea/Air holiday plans. It tells you how you can plan the holiday of a lifetime costing no more than some landlocked vacations close to home.

P & O - ORIENT LINES
See your Accredited Travel Agent.
PLEASE NOTE

THIS MATERIAL WAS FILMED AT A REDUCTION RATIO 16.5x

SOME PAGES MAY CONTAIN FLAWS AND OTHER DEFECTS WHICH APPEAR ON THE FILM